25 research outputs found

    Gene-environment and gene-gene interactions in myopia

    Get PDF
    Motivated by the release of the UK Biobank data and the lack of documented gene-environment (GxE) and gene-gene (GxG) interactions in myopia, I sought to apply various statistical tools to provide a quantitative assessment of the interplay between environmental and genetic risk factors shaping refractive error. The comparison between the two different risk measurement scales with which GxE interactions can be identified suggested that the additive risk scale can lead to a more informative perspective about refractive error aetiology. The evaluation of two indirect methods for detecting genetic variants affecting refractive error via interaction effects suggested the enrichment of GxG and GxE among the variants that display marginal SNP effects. For genetic variants already known from prior GWAS studies to influence refractive error, genetic effect sizes were highly non-uniform; individuals from the tails of the refractive error distribution (i.e. high myopes and hyperopes) displayed much larger effects compared to individuals in the middle of the distribution (i.e. emmetropes). Prediction of refractive error using GxE interactions indicated that although some of the variance of refractive error could be explained by a risk score constructed using interaction effects, the contribution of GxE was already accounted for by a risk score constructed using marginal SNP effects only. Although a handful of candidate genes were identified using multifactor dimensionality reduction technique, none displayed compelling evidence of involvement in a GxG interaction. There was, however, suggestive evidence that the candidate genes constitute a genetic interaction network which is regulated by hub gene ZMAT4. In summary, the analyses reported in this thesis provide further support for the challenging nature of definitively identifying loci involved in GxE and GxG interactions. The thesis provides several guidelines that future studies could take into account to obtain more insightful results regarding the extent of interactions in refractive error

    Non-additive (dominance) effects of genetic variants associated with refractive error and myopia

    Get PDF
    Genome-wide association studies (GWAS) have revealed that the genetic contribution to certain complex diseases is well-described by Fisher’s infinitesimal model in which a vast number of polymorphisms each confer a small effect. Under Fisher’s model, variants have additive effects both across loci and within loci. However, the latter assumption is at odds with the common observation of dominant or recessive rare alleles responsible for monogenic disorders. Here, we searched for evidence of non-additive (dominant or recessive) effects for GWAS variants known to confer susceptibility to the highly heritable quantitative trait, refractive error. Of 146 GWAS variants examined in a discovery sample of 228,423 individuals whose refractive error phenotype was inferred from their age-of-onset of spectacle wear, only 8 had even nominal evidence (p < 0.05) of non-additive effects. In a replication sample of 73,577 individuals who underwent direct assessment of refractive error, 1 of these 8 variants had robust independent evidence of non-additive effects (rs7829127 within ZMAT4, p = 4.76E−05) while a further 2 had suggestive evidence (rs35337422 in RD3L, p = 7.21E−03 and rs12193446 in LAMA2, p = 2.57E−02). Accounting for non-additive effects had minimal impact on the accuracy of a polygenic risk score for refractive error (R2 = 6.04% vs. 6.01%). Our findings demonstrate that very few GWAS variants for refractive error show evidence of a departure from an additive mode of action and that accounting for non-additive risk variants offers little scope to improve the accuracy of polygenic risk scores for myopia

    Education interacts with genetic variants near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C to confer susceptibility to myopia

    Get PDF
    Myopia most often develops during school age, with the highest incidence in countries with intensive education systems. Interactions between genetic variants and educational exposure are hypothesized to confer susceptibility to myopia, but few such interactions have been identified. Here, we aimed to identify genetic variants that interact with education level to confer susceptibility to myopia. Two groups of unrelated participants of European ancestry from UK Biobank were studied. A ‘Stage-I’ sample of 88,334 participants whose refractive error (avMSE) was measured by autorefraction and a ‘Stage-II’ sample of 252,838 participants who self-reported their age-of-onset of spectacle wear (AOSW) but who did not undergo autorefraction. Genetic variants were prioritized via a 2-step screening process in the Stage-I sample: Step 1 was a genome-wide association study for avMSE; Step 2 was a variance heterogeneity analysis for avMSE. Genotype-by-education interaction tests were performed in the Stage-II sample, with University education coded as a binary exposure. On average, participants were 58 years-old and left full-time education when they were 18 years-old; 35% reported University level education. The 2-step screening strategy in the Stage-I sample prioritized 25 genetic variants (GWAS P < 1e-04; variance heterogeneity P < 5e-05). In the Stage-II sample, 19 of the 25 (76%) genetic variants demonstrated evidence of variance heterogeneity, suggesting the majority were true positives. Five genetic variants located near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C had evidence of a genotype-by-education interaction in the Stage-II sample (P < 0.002) and consistent evidence of a genotype-by-education interaction in the Stage-I sample. For all 5 variants, University-level education was associated with an increased effect of the risk allele. In this cohort, additional years of education were associated with an enhanced effect of genetic variants that have roles including axon guidance and the development of neuronal synapses and neural circuits

    Author Correction: Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk

    Get PDF

    Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error

    Get PDF
    Corneal curvature, a highly heritable trait, is a key clinical endophenotype for myopia - a major cause of visual impairment and blindness in the world. Here we present a trans-ethnic meta-analysis of corneal curvature GWAS in 44,042 individuals of Caucasian and Asian with replication in 88,218 UK Biobank data. We identified 47 loci (of which 26 are novel), with population-specific signals as well as shared signals across ethnicities. Some identified variants showed precise scaling in corneal curvature and eye elongation (i.e. axial length) to maintain eyes in emmetropia (i.e. HDAC11/FBLN2 rs2630445, RBP3 rs11204213); others exhibited association with myopia with little pleiotropic effects on eye elongation. Implicated genes are involved in extracellular matrix organization, developmental process for body and eye, connective tissue cartilage and glycosylation protein activities. Our study provides insights into population-specific novel genes for corneal curvature, and their pleiotropic effect in regulating eye size or conferring susceptibility to myopia.</p

    Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk

    Get PDF
    Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error

    Get PDF
    Corneal curvature, a highly heritable trait, is a key clinical endophenotype for myopia - a major cause of visual impairment and blindness in the world. Here we present a trans-ethnic meta-analysis of corneal curvature GWAS in 44,042 individuals of Caucasian and Asian with replication in 88,218 UK Biobank data. We identified 47 loci (of which 26 are novel), with population-specific signals as well as shared signals across ethnicities. Some identified variants showed precise scaling in corneal curvature and eye elongation (i.e. axial length) to maintain eyes in emmetropia (i.e. HDAC11/FBLN2 rs2630445, RBP3 rs11204213); others exhibited association with myopia with little pleiotropic effects on eye elongation. Implicated genes are involved in extracellular matrix organization, developmental process for body and eye, connective tissue cartilage and glycosylation protein activities. Our study provides insights into population-specific novel genes for corneal curvature, and their pleiotropic effect in regulating eye size or conferring susceptibility to myopia. Qiao Fan et al. report a genome-wide association analysis of corneal curvature-an important measurement for identifying vision problems, such as myopia-in more than 45,000 individuals of either European or Asian ancestry. They identify 47 loci, 26 of which are novel, with some showing population-specific effects and pleiotropic effects on eye elongation and myopia.Peer reviewe
    corecore